Uncountable classical and quantum complexity classes

نویسندگان

  • Maksims Dimitrijevs
  • Abuzer Yakaryilmaz
چکیده

Polynomial–time constant–space quantum Turing machines (QTMs) and logarithmic–space probabilistic Turing machines (PTMs) recognize uncountably many languages with bounded error (Say and Yakaryılmaz 2014, arXiv:1411.7647). In this paper, we investigate more restricted cases for both models to recognize uncountably many languages with bounded error. We show that double logarithmic space is enough for PTMs on unary languages in sweeping reading mode or logarithmic space for one-way head. On unary languages, for quantum models, we obtain middle logarithmic space for counter machines. For binary languages, arbitrary small non-constant space is enough for PTMs even using only counter as memory. For counter machines, when restricted to polynomial time, we can obtain the same result for linear space. For constant–space QTMs, we follow the result for a restricted sweeping head, known as restarting realtime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Computability

In this paper some theoretical and (potentially) practical aspects of quantum computing are considered. Using the tools of transcendental number theory it is demonstrated that quantum Turing machines (QTM) with rational amplitudes are sufficient to define the class of bounded error quantum polynomial time (BQP) introduced by Bernstein and Vazirani [Proc. 25th ACM Symposium on Theory of Computat...

متن کامل

Quantum and Classical Complexity Classes: Separations, Collapses, and Closure Properties

Separations, Collapses, and Closure Properties Holger Spakowski1?, Mayur Thakur2??, and Rahul Tripathi2? ? ? 1 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. [email protected] 2 Department of Computer Science, University of Rochester, Rochester, NY 14627, USA. fthakur,[email protected] Abstract. We study the complexity of quantum c...

متن کامل

Quantum Complexities and Interactive Proof Systems

In complexity studies, Interactive Proof Systems are a very helpful means to establish relationships between major complexity classes. The rise of new complexity classes, which follow the properties of quantum computation, suggests a new set of variants of these systems. This paper focuses on the currently established theories in quantum complexity studies, and studies how quantum complexity cl...

متن کامل

Interpolating Between Quantum and Classical Complexity Classes

We reveal a natural algebraic problem whose complexity appears to interpolate between the well-known complexity classes BQP and NP: ⋆ Decide whether a univariate polynomial with exactly m monomial terms has a p-adic rational root. In particular, we show that while (⋆) is doable in quantum randomized polynomial time when m=2 (and no classical randomized polynomial time algorithm is known), (⋆) i...

متن کامل

A Number Theoretic Interpolation Between Quantum and Classical Complexity Classes

We reveal a natural algebraic problem whose complexity appears to interpolate between the well-known complexity classes BQP and NP: ⋆ Decide whether a univariate polynomial with exactly m monomial terms has a p-adic rational root. In particular, we show that while (⋆) is doable in quantum randomized polynomial time when m=2 (and no classical randomized polynomial time algorithm is known), (⋆) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016